

CUG 2007 Proceedings 1 of 6

Performance and Functional Improvements in
MPT Software for the Cray XT System

Mark Pagel, Howard Pr itchard,
K im McMahon, Alex Hilleary

 Cray Inc.

ABSTRACT: Since the introduction of the Cray XT3, many performance improvements
have been made in the MPT and portals software stack especially for dual-core support.
Many of these are enabled by default but some require users to enable them. This paper
will discuss these optimizations and show the measured performance improvements. In
addition, key functional improvements will also be discussed. Planned MPT optimizations
and functional improvements will be presented as well, including those being planned for
Compute Node Linux.

KEYWORDS: MPI, SHMEM, dual-core, portals, catamount, Compute Node Linux

1. Intr oduction

The software stack for Message Passing Toolkit
(MPT) which contain the MPI and SHMEM libraries has
been enhanced over the last year both in performance and
functionality. Some of these improvements were
implemented in the MPI and SHMEM libraries and some
in the underlying software such as portals. This paper
will discuss some of these improvements and present
some measured improvements using the IMB/Pallas
benchmarks. In addition, several features that should
become available in the next year will also be discussed.

2. Portals Improvements

The original implementation for dual-core support
was supplied by Sandia National Lab and is known as
Catamount Virtual Node or CVN. This implementation
used a master and slave processor paradigm for dual-core
support. Although initial performance was reasonable,
for some applications changes were needed at the portals
layer to allow better performance. Three of these
optimizations were send-to-self short circuit optimization,
symmetric master/slave optimization and portals API
extensions.

Send-to-self short circuit optimization

This optimization uses a memory to memory copy for

most messages of reasonable size when the source and
destination are on the same node. This reduces the latency
by eliminating the round trip of the data to the SeaStar,
and then back into memory. For very large messages, the
data still travels out to SeaStar and back to allow
additional overlap of computation. In this case, the DMA
engine in the SeaStar is essentially substituting for the
Opteron based memcpy function. This change was added
to the 1.4.28 and 1.5.07 XT releases.

Symmetric master/slave optimization

The original master/slave design of CVN had all

portals processing confined to core 0. This resolved a
variety of synchronization issues. The primary downside
to it is that this interferes with computation on core 0, as
well as adding latency by having all core 1 portals
operations forwarded to core 0 for processing. This
optimization strives to reduce the latency impact by
performing most all portals processing on the core that
they were requested from. This means that when the
process executing on core 1 issues the syscall to do a
portals PUT, the processing remains on core 1, all the way
through the request to the SeaStar. A single large portals

CUG 2007 Proceedings 2 of 6

lock maintains proper synchronization. Interrupts from
the SeaStar are still directed to core 0 for servicing.

This optimization is most beneficial when core 1 is
doing communication, while core 0 is doing computation.
When both cores are actively doing communication, much
of the benefit is lost due to lock contention, as well as
Opteron cache thrashing. This change was added in the
1.4.28 and 1.5.07 XT releases.

Future work includes finer grained locking under
CNL to reduce lock contention.

Portals API extensions

This change extended the Portals API by three new

entry points. These new functions are called
PtlMEMDPost, PtlMEMDInsert, and PtlMEMDAttach.
All three of these functions are essentially amalgams of
already existing Portals functions. The first of these
(PtlMEMDPost) essentially combines the actions of
PtlMEInsert, PtlMDAttach, and PtlMDUpdate. This
particular sequence is used for posting an MPI receive.
The combination replaces three distinct system calls with
one, thereby reducing the overall cost. This change was
added in the 1.4.28 and 1.5.07 XT releases.

3. MPT improvements

Several MPT optimizations have been implemented
that should improve performance on user applications.
Some of these have been enabled by default others get
enabled when an environment variable is set. One of the
optimizations that have been enabled by default is the use
of PtlMEMDPost mentioned above and was made
available in the 1.4.28 and 1.5.07 XT release.

Another default optimization has been improvements
to the SHMEM reductions and broadcast collectives
which show improvements of more than 40% over the
previous versions. This optimization is in 1.4.30 and
1.5.09 versions of the XT software.

It is the goal of the MPT development group to
enable optimizations by default. Some optimizatons may
degrade performance in certain cases and for that reason
they are not enabled by default. Further detail of these
optimizations will be given here. It is our hope that
many of these will be enabled by default in future releases
as they are improved to handle all performance
degradations. These recently added non-default
optimizations are rank placement, multi-core optimized
collectives, optimized memcpy and disabling of portals
message matching.

Rank Placement

The default yod rank placement on dual-core XT

systems may not be optimal for many applications. For

example, for a yod-launched 8 process (4 node) MPI job
on dual-core nodes, the default placement would be:

Node 0 1 2 3

Rank 0&4 1&5 2&6 3&7

 A new MPI environment variable has been

implemented that allows users to change this placement.
The MPICH_RANK_REORDER_METHOD
environment variable can be set to three different
placement schemes. Setting the variable to "1" will cause
MPI ranks to be assigned according to SMP placement.
For example, using the SMP method an 8 process (4
node) MPI job on dual-core nodes, the rank placement
would be:

Node 0 1 2 3

Rank 0&1 2&3 4&5 6&7

Setting MPICH_RANK_REORDER_METHOD to

"2" will cause ranks to be assigned according to a folded-
rank placement and has been known to help some
applications. Instead of rank placement starting over on
the first node when half of the MPI processes have been
placed, this option places the N/2 process on the last node,
going back to the initial node. For example, using the
folded-rank method an 8 process (4 node) MPI job on
dual-core nodes, the rank placement would be:

Node 0 1 2 3

Rank 0&7 1&6 2&5 3&4

Finally, some applications may benefit from fully

specifying how ranks are placed and setting
MPICH_RANK_REORDER_METHOD to "3" will
enable custom rank placement. The custom rank
placement option will cause the MPI library to look in the
file called MPICH_RANK_ORDER for placement
information. A comma separated list of ranks as well as
hyphenated syntax is supported and can be mixed. The
MPICH_RANK_ORDER file must be readable by all
ranks in the current running directory. The order in which
the ranks are listed in the file determines which ranks are
placed closest to each other. This is most helpful for dual-
core nodes. For example:

CUG 2007 Proceedings 3 of 6

Syntax Rank Placement
0-15 Places the ranks in SMP-style order
15-0 Places ranks 15&14 on the first node,

13&12 on the next, etc.
0,5,1,4,2,3,6,7 Places ranks 0&5 on the first node, 1&4

on the next, 2&3 together and 6&7
together.

The rank placement feature was made available in the
1.4.30 and 1.5.08 XT releases. The following charts show
how SMP style placement improves performance while
comparing the IMB/Pallas Benchmarks for PingPong,
Allreduce, Alltoall and Bcast. In the following charts
the top(dark line) is the default and the lighter is with the
optimization enabled. All runs were done using 128pes.
The PingPong test really is comparing on-node vs. across
node since we are only using the 2 pe case which with
SMP ordering, rank 0 and 1 are on the same node and
with default placement they are not.

For Allreduce SMP placement was 7% to 32% faster
above 16K bytes.

For Alltoall SMP placement was 13% to 36% faster
above 16K bytes.

For Bcast SMP placement was 12% faster at 8 bytes and
45% faster at 1MB.

Multi-core Optimized Collectives

The XT MPICH2 supports a framework for
implementing optimized collective functions, leveraging
infrastructure already in place within the standard
MPICH2 distribution. The framework is structured to
take advantage of multi-core nodes: a network based
component utilizes portals, while an on-node component
can take advantage of any possible on-node
communication mechanism (shared memory, for
example).

Currently in the XT MPICH2 running on catamount
compute nodes, portals is used both for intra-node and
inter-node communication.

At this time only two collective operations are
actually defined in the framework: MPI_Allreduce and
MPI_Barrier. These optimizations can be enabled by
setting the MPI_COLL_OPT_ON environment variable.
The following chart shows the speed-up of
MPI_Allreduce using the IMB/Pallas benchmarks. The

SMP ordering Pallas - Bcast(128pe)

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 100000
0

1E+07

of bytes

ti
m

e
in

 u
se

c

SMP ordering Pallas - Alltoall(128pe)

10000

100000

1000000

10000000

10000 100000 1000000 10000000

of bytes

ti
m

e
in

 u
se

c

SMP ordering Pallas - PingPong

1

10

100

1000

1 10 100 1000 10000 10000
0

1E+06

of bytes

ti
m

e
in

 u
se

c

DEFAULT

SMP-order

SMP ordering Pallas - Allreduce(128pe)

100

1000

10000

100000

10000 100000 1000000 10000000

of bytes

tim
e

in
 u

se
c

CUG 2007 Proceedings 4 of 6

range of speed-up was around 5% at 1MB to 40% at 8
bytes over the default for MPI_Allreduce. MPI_Barrier
was about 30% faster up to 256 pes than the default.

Other functions, either implemented internally in the

MPICH2 library, or in external libraries, can readily be
incorporated into the framework. This optimization was
introduced in the 1.4.32 and 1.5.11 XT releases.

Optimized Memcpy

Setting the MPICH_FAST_MEMCPY environment
variable enables use of an optimized memcpy routine in
the XT MPICH2. This optimized memcpy routine,
written in assembly for the XT architechture makes use of
such features as loop unrolling, non-temporal memory
references and prefetching to provide superior memcpy
performance. When compared to the default Catamount
memcpy performance, the optimized memcpy is nearly
4X faster for 1 megabyte copies. As noted in the chart
below, the memcpy performance varies greatly with the
size of the data being copied.

In MPICH, when the optimized memcpy is enabled,

it is used for all local memory copies in the point-to-point
and collective MPI operations. This includes copying
local data out of the unexpected buffers into the user

buffers on the receive-side, copying user data to internal
MPI buffers on the send-side, and creating temporary
copies of data buffers for some collective operations. The
optimized memcpy is not currently used in the MPI I/O
routines, or for derived data types.

Given the different characteristics of the memcpy
routines, including cache effects, the effect of using the
optimized memcpy in MPICH is not as straight forward
as the raw memcpy performance indicates. Even though
the optimized memcpy is faster in raw performance, some
MPI collectives, as seen with the Pallas benchmark suite,
show a performance degradation with certain message
sizes when using the optimized memcpy.

Other message sizes show a substantial performance
gain. For this reason, we have chosen not to enable the
optimized memcpy as the default, but to allow users to
select this optimized memcpy if their application
performance can benefit from it.

For Allreduce the fast memcpy shows more than a 13%
performance improvement above 256K bytes. This
optimization was added to 1.4.46 and 1.5.30 XT releases.

Disabling of Portals Message Matching

Setting the MPICH_PTL_MATCH_OFF
environment variable disables registration of receive
requests with portals. This option can significantly
improve performance for latency-sensitive applications,
especially on dual-core nodes. When setting this variable,
receive requests (via MPI_Recv() and it's variants) are
never posted to the portals-managed queue, but instead
are tracked and matched via an internal MPI queue.
When the application posts a receive request, setting
MPICH_PTL_MATCH_OFF saves the cost of the portals
system call, as well as eliminating the portals lock that is
held during that portals call. When a message is received
via portals, since no receive requests are posted to portals,
all messages are copied to the unexpected message

Allreduce multi-core optimization 256 pes

0
100
200
300
400
500
600
700
800
900

1 1000 1000000

of bytes

ti
m

e
in

 u
se

c

Raw Memcpy Comparison
Percent Improvement using Optimized Memcpy over Default Memcpy

-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

450.00%

1 4 16 64
256

1024
4096

16384

65536

26
21

44

10
48

57
6

41
94

30
4

Transfer Size (bytes)

Allreduce 128p
Percent Improvement using Optimized Memcpy over Default Memcpy

-5%

0%

5%

10%

15%

20%

0 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

32768

65536

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Message size (bytes)

CUG 2007 Proceedings 5 of 6

buffers. MPI polls the portals event queues, and when the
message transfer to the unexpected buffer is complete,
MPI copies the data to the user buffer specified in the
receive request. An extra copy is introduced is this path,
but for small mesages (less than 4096 bytes) that time is
mimimal.

When messages become larger (4096 bytes - 128K

bytes), the extra local copy can become significant, and in
some cases, disabling the portals receive matching causes
a performance degradation in MPI messaging.

For very large messages sent via the rendezvous

protocol (greater than 128K bytes), MPI uses the portals
'GET' protocol. In either case, whether MPI or portals is
performing the matching, no extra copy of the data is
incurred, since portals only initially sends a message
header. Once this header is matched to a posted receive
(either via portals or MPI matching), then the GET is
invoked, and the data is transfers directly into the user
specified buffer. Performance for these very large
message transfers usually does not change if
MPICH_PTL_MATCH_OFF is set or not.

Due to the nature of how portals performs a GET,
subtle timing differences in the initiating of these
requests, especially when performing bi-directional large
data transfers on dual-core nodes, can play a significant
role in the performance. Certain sequencing of events can
lead to the serialization of bi-directional traffic in Portals.
We have seen cases where setting
MPICH_PTL_MATCH_OFF can almost double bi-
directional large message bandwidth, as well as cases
where this variable has little or no effect on bandwidth.
The chart below shows the improvement in PingPong
latency with small message sizes when
MPICH_PTL_MATCH_OFF is set and how it gets worse
for larger messages.

MPI Latency Comparison (on-node in usecs)

using MPICH_PTL_MATCH_OFF

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message Size (bytes)

One could imagine a superior performing solution
would be to have MPI handle the message matching for
small messages, and portals handle the matching for
larger messages. However, this requires careful analysis,

as it can be difficult to preserve the MPI ordering
semantics in this scenario, especially with the posting of
ANY_SRC receives. The MPT team will be looking into
providing this functionality in the future. This
optimization was enabled in the 1.4.50 and 1.5.39 XT
releases.

4. MPT Functional Improvements

In addition to the previously mentioned performance
improvements several functional improvements have been
recently added. These include an updated intro_mpi man
page, default64 support, Pathscale and GNU 4.1.1
compiler support.

The intro_mpi man page has been updated to contain
more information about the environment variables that are
supported and their default values. This man page should
be checked often to learn of XT specific optimizations.

The PGI compiler supports the Ò-i8Ó and Ò-r8Ó
compiler options which modify the default integer and
real Fortran size to 8 bytes. Users who have existing
codes that require this can now use the Ò-default64Ó
option which will automatically add the PGI command-
line options and pull in special versions of the MPI and
SHMEM libraries.

When the Pathscale or GNU 4.1.1 modules are
loaded, corresponding MPI and SHMEM libraries will
automatically be loaded.

Some early XT3 users began using the ÒmpiccÓ,
Òmpif77Ó and Òmpif90Ó commands. Although these are
available, they are not officially supported and may be
removed in the future. Users should use the ÒccÓ and
ÒftnÓ commands which are fully supported and are needed
to fully benefit from much of the recently added
functionality.

5. Future MPT Improvements

With the XT 2.0 release support for Compute Node
Linux(CNL) will be available. This will include support
for MPI and SHMEM. These libraries will use ÒaprunÓ
to launch and instructions on how to launch can be
obtained from the aprun man page. Another feature of
CNL is that the default placement on CNL will be SMP
placement. Since CNL allows memory mapping a future
version of the MPI library will support the ability to
communicate within a multi-core node using shared
memory rather than calling the portals interface.

The XT MPI-IO implementation is based on the
ROMIO implementation from Argonne National
Lab(ANL). Several ROMIO optimizations are not
enabled by default for collective I/O. These can be
enabled by using the MPI_Info_set routine to set these
hints. For example:

CUG 2007 Proceedings 6 of 6

CALL MPI_Info_create(infoh, ierror)
CALL MPI_In fo_set(infoh, 'romio_cb_write',
 'enable', ierror)

We are working on a mechanism to more easily enable
these hints using environment variables.

The new faster memcpy mentioned earlier has been
limited to certain areas of the MPI library. Areas that are
not currently using this fast memcpy are being examined
to see if they will also benefit. These include MPI-IO and
derived datatypes. In addition, other uses of the faster
memcpy routine within the OS are also being examined.

Another feature that is planned to be supported is
shared libraries on CNL.

6. Conclusion

 The many improvements to the MPT software and
underlying portals software stack have been shown to
improve the IMB/Pallas benchmarks in many cases. The
real test of these improvements are how they will perform
on real applications. Some initial data for real
applications look promising when using these
optimizations. The MPT team is committed in
developing new optimizations and new functionality to
make the MPT software both easy to use and highly
optimized.

About the Authors

Mark Pagel is the manager of the MPT group at Cray Inc.
and can be reached by email at pags@cray.com. Howard
Pritchard and Kim McMahon are key members of the
MPT development team and continue to make many
improvements in the XT MPT software. Alex Hilleary
has been working on Portals since late 2004, with an
emphasis on the SeaStar firmware.

